Autor: |
Fen Qiu, Chaofan Shao, Cheng Zhou, Lili Yao |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Heliyon, Vol 10, Iss 13, Pp e31868- (2024) |
Druh dokumentu: |
article |
ISSN: |
2405-8440 |
DOI: |
10.1016/j.heliyon.2024.e31868 |
Popis: |
Efficient, non-destructive cabbage harvesting is crucial for preserving its flavor and quality. Current cabbage harvesting mainly relies on mechanized automatic picking methods. However, a notable deficiency in most existing cabbage harvesting devices is the absence of a root posture recognition system to promptly adjust the root posture, consequently impacting the accuracy of root cutting during harvesting. To address this issue, this study introduces a cabbage root posture recognition method that combines deep learning with traditional image processing algorithms. Preliminary detection of the main root Region of Interest (ROI) areas of the cabbage is carried out through the YOLOv5s deep learning model. Subsequently, traditional image processing methods, the Graham algorithm, and the method of calculating the minimum circumscribed rectangle are employed to specifically detect the inclination angle of cabbage roots. This approach effectively addresses the difficulty in calculating the inclination angle of roots caused by occlusion from outer leaves. The results demonstrate that the precision and recall of this method are 98.7 % and 98.6 %, respectively, with an average absolute error of 0.80° and an average relative error of 1.34 % in posture. Using this method as a reference for mechanical harvesting can effectively mitigate cabbage damage rates. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|