Detection of Rice Spikelet Flowering for Hybrid Rice Seed Production Using Hyperspectral Technique and Machine Learning

Autor: Yali Zhang, Luchao Bai, Yuan Qi, Huasheng Huang, Xiaoyang Lu, Junqi Xiao, Yubin Lan, Muhua Lin, Jizhong Deng
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Agriculture, Vol 12, Iss 6, p 755 (2022)
Druh dokumentu: article
ISSN: 12060755
2077-0472
DOI: 10.3390/agriculture12060755
Popis: Effective detection of rice spikelet flowering is crucial to the determination of optimal pollination timing for hybrid rice seed production. Currently, the detection of rice spikelet flowering status relies on manual observation of farmers, which has low efficiency and large errors. This study attempts to acquire rice spikelet flowering information using a hyperspectral technique and machine learning in order to meet the needs of hybrid rice seed pollination rapidly and automatically. Hyperspectral data of rice male parents with flowering and non-flowering in two experimental sites were collected with an ASD FieldSpec® HandHeld™2 spectrometer. Three traditional classifiers, Random Forest (RF), Support Vector Machine (SVM) and Back Propagation (BP) neural network, and Convolutional Neural Network (CNN), were used to build classification models for rice spikelets flowering detection. Three data processing methods, PCA feature extraction, GA feature selection, and the PCA and GA combination algorithm, were used for data dimensionality reduction. By comparing the precision and recall rate of different algorithms and data processing methods, the algorithms applicable to identify rice spikelet flowering were investigated. Results show that by evaluating different feature reduction methods and classifiers, the optimal model for rice spikelets flowering detection is the BP model with PCA feature extraction. The accuracy of the model reaches up to 96–100%. Hyperspectral technology and machine learning algorithm are capable of effective detection of rice spikelet flowering. This study provides technical reference for accurate judgment of rice flowering and helps to determine the optimal operation time for supplementary pollination of hybrid rice.
Databáze: Directory of Open Access Journals