Finite fractal dimension of pullback attractors for a nonclassical diffusion equation

Autor: Xiaolei Dong, Yuming Qin
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: AIMS Mathematics, Vol 7, Iss 5, Pp 8064-8079 (2022)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2022449?viewType=HTML
Popis: In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $. First, we prove the existence of pullback attractors for a nonclassical diffusion equation with arbitrary polynomial growth condition by applying the operator decomposition method. Then, by the fractal dimension theorem of pullback attractors given by [6], we prove the finite fractal dimension of pullback attractors for a nonclassical diffusion equation in $ H^1_0(\Omega) $.
Databáze: Directory of Open Access Journals