Infection Dynamics of SARS-CoV-2 in Mucus Layer of the Human Nasal Cavity - Nasopharynx
Autor: | Li Hanyu, Kuga Kazuki, Ito Kazuhide |
---|---|
Jazyk: | English<br />French |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | E3S Web of Conferences, Vol 356, p 05021 (2022) |
Druh dokumentu: | article |
ISSN: | 2267-1242 20223560 |
DOI: | 10.1051/e3sconf/202235605021 |
Popis: | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the worldwide spread of coronavirus disease-2019 (COVID-19) since its emergence in 2019. Virus replication and infection dynamics after its deposition on the respiratory tissues require detailed studies for infection control. This study focused primarily on SARS-CoV-2 dynamics in the mucus layer of the nasal cavity and nasopharynx, based on coupled computational fluid-particle dynamics (CFPD) and host-cell dynamics (HCD) analyses. Considering the mucus milieu, we coupled the target-cell limited model with the convection-diffusion term to develop an improved HCD model. The infection dynamics in the mucus layer were predicted by a combination of the mucus flow field, droplet deposition distribution, and HCD. The effect of infection rate, β, was investigated as the main parameter of HCD. The results showed that the time series of SARS-CoV-2 concentration distribution in the mucus layer strongly depended on diffusion, convection, and virus production. β affected the viral load peak, its arrival time, and duration. Although the SARS-CoV-2 dynamics in the mucus layer obtained in this study have not been verified by appropriate clinical data, it can serve as a preliminary study on the virus transmission mode in the upper respiratory tract. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |