Popis: |
ABSTRACT Due to the changes in pathogenic species and the absence of research on topical skin antibiotics, the therapy of skin and soft tissue infections (SSTIs) is facing more and more severe challenges. It is particularly urgent to look for alternative therapies without induction of drug resistance. UV C (UVC) light within the range of 200 to 280 nm is one of the most common techniques used to kill and/or inactivate pathogenic microorganisms. However, the traditional most commonly used wavelength of 254 nm irradiated from a low-pressure mercury lamp is hazardous to human health, being both carcinogenic and damaging to eye tissues, which limits its applications in vivo. This research aimed to investigate the antimicrobial properties and influence of 275-nm UVC light from a light-emitting diode (UVC-LED light) on wound healing time. Five bacteria, three fungi, and scalded-mouse models combined with SSTIs were used to evaluate the antimicrobial effect in vitro and in vivo. 275-nm UVC-LED light inactivated both bacteria and fungi with a very short irradiation time in vitro and induced neither DNA damage nor epidermal lesions in the mice’s skin. Furthermore, in mouse models of SSTIs induced by either methicillin-resistant Staphylococcus aureus (MRSA) or Candida albicans, the 275-nm UVC-LED light showed significant antimicrobial effects and shortened the wound healing time compared with that in the no-irradiation group. UVC-LED light at 275 nm has the potential to be a new form of physical therapy for SSTIs. IMPORTANCE As a common clinical problem, the therapy of SSTIs is facing growing challenges due to an increase in the number of drug-resistant bacteria and fungi. UV C (UVC) light sterilization has been widely used in all aspects of daily life, but there are very few reports about in vivo therapy using UVC light. It is well known that prolonged exposure to UVC light increases the possibility of skin cancer. In addition, it is also very harmful for eyes. UV irradiation with 254-nm UVC light can cause corneal damage, like thinning of the corneal epithelial layer, superficial punctate keratitis, corneal erosion, etc. In this study, we focused on looking for a more accessible light source and safer UVC wavelength, and 275-nm UVC LED light was chosen. We investigated its applicability for SSTIs therapy with relative skin safety and expected that it could be used as a new physical therapy method for SSTIs. |