Multiscale study of reactive transport and multiphase heat transfer processes in catalyst layers of proton exchange membrane fuel cells

Autor: Ruiyuan Zhang, Li Chen, Ting Min, Yu-Tong Mu, Liang Hao, Wen-Quan Tao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Carbon Neutrality, Vol 3, Iss 1, Pp 1-27 (2024)
Druh dokumentu: article
ISSN: 2788-8614
2731-3948
DOI: 10.1007/s43979-024-00089-5
Popis: Abstract Improving the performance of proton exchange membrane fuel cells (PEMFCs) requires deep understanding of the reactive transport processes inside the catalyst layers (CLs). In this study, a particle-overlapping model is developed for accurately describing the hierarchical structures and oxygen reactive transport processes in CLs. The analytical solutions derived from this model indicate that carbon particle overlap increases ionomer thickness, reduces specific surface areas of ionomer and carbon, and further intensifies the local oxygen transport resistance (R other). The relationship between R other and roughness factor predicted by the model in the range of 800-1600 s m-1 agrees well with the experiments. Then, a multiscale model is developed by coupling the particle-overlapping model with cell-scale models, which is validated by comparing with the polarization curves and local current density distribution obtained in experiments. The relative error of local current density distribution is below 15% in the ohmic polarization region. Finally, the multiscale model is employed to explore effects of CL structural parameters including Pt loading, I/C, ionomer coverage and carbon particle radius on the cell performance as well as the phase-change-induced (PCI) flow and capillary-driven (CD) flow in CL. The result demonstrates that the CL structural parameters have significant effects on the cell performance as well as the PCI and CD flows. Optimizing the CL structure can increase the current density and further enhance the heat-pipe effect within the CL, leading to overall higher PCI and CD rates. The maximum increase of PCI and CD rates can exceed 145%. Besides, the enhanced heat-pipe effect causes the reverse flow regions of PCI and CD near the CL/PEM interface, which can occupy about 30% of the CL. The multiscale model significantly contributes to a deep understanding of reactive transport and multiphase heat transfer processes inside PEMFCs.
Databáze: Directory of Open Access Journals