The distribution of ideals whose norm divides n in the Gaussian ring

Autor: Tong Wei
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 3, Pp 5863-5876 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024285?viewType=HTML
Popis: Let $ O_{K} = \mathbb{Z}[i] $. For each positive integer $ n $, denote $ \xi_{K}(n) $ as the number of integral ideals whose norm divides $ n $ in $ O_{K} $. In this paper, we studied the distribution of ideals whose norm divides $ n $ in $ O_{K} $ by using the Selberg-Delange method. This is a natural variant of a result studied by Deshouillers, Dress, and Tenenbaum (often called the DDT Theorem), and we found that the distribution function was subject to beta distribution with density $ \sqrt{3}/(2\pi\sqrt[3]{u^{2}(1-u)}) $.
Databáze: Directory of Open Access Journals