Bioinformatics analysis and experimental validation revealed that Paeoniflorigenone effectively mitigates cerebral ischemic stroke by suppressing oxidative stress and inflammation

Autor: Zhiyan Wu, Xingrong Tang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-55041-5
Popis: Abstract Inflammation and oxidative stress are becoming more recognized as risk factors for ischemic stroke. Paeoniflorigenone (PA) has diverse pharmacological effects that include anti-inflammatory and antioxidant properties. However, the specific mechanisms by which PA affects cerebral ischemic stroke have not been studied. Our objective was to investigate the potential targets and mechanisms of PA in preventing cerebral ischemic stroke. We obtained the potential targets of PA from the SwissTargetPrediction, Super-PRED, and SEA Search Server databases. The GSE97537 dataset was utilized to identify gene targets related to ischemic stroke. The overlapping targets were imported into the STRING database to construct a protein–protein interaction network, and enrichment analyses were conducted using R software. Rats were pretreated with PA for three weeks before undergoing MCAO and reperfusion. H&E staining, ELISA, and qRT-PCR analyses were then performed to explore the potential mechanisms of PA. In the study, we identified 439 potential targets for PA and 1206 potential targets for ischemic stroke. Out of these, there were 71 common targets, which were found to be primarily associated with pathways related to oxidative stress and inflammation. The results from animal experiments showed that PA was able to improve nerve function and reduce inflammatory cytokines and oxidative stress in the MCAO-induced ischemic stroke model. Additionally, the expression of core genes in the MCAO + HPA group was significantly lower compared to the MCAO group. Our study revealed that the potential mechanisms by which PA prevents ischemic stroke involve oxidative stress and inflammation. These findings provide important theoretical guidance for the clinical use of PA in preventing and managing ischemic stroke.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje