Autor: |
Lilan Yuan, Haoyu Liu, Xueying Ge, Ganyan Yang, Guanglin Xie, Yuxia Yang |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Insects, Vol 13, Iss 2, p 118 (2022) |
Druh dokumentu: |
article |
ISSN: |
2075-4450 |
DOI: |
10.3390/insects13020118 |
Popis: |
The predaceous beetle family Cleridae includes a large and widely distributed rapid radiation, which is vital for the ecosystem. Despite its important role, a number of problems remain to be solved regarding the phylogenetic inter-relationships, the timing of divergence, and the mitochondrial biology. Mitochondrial genomes have been widely used to reconstruct phylogenies of various insect groups, but never introduced to Cleridae until now. Here, we generated 18 mitochondrial genomes to address these issues, which are all novel to the family. In addition to phylogenomic analysis, we have leveraged our new sources to study the mitochondrial biology in terms of nucleotide composition, codon usage and substitutional rate, to understand how these vital cellular components may have contributed to the divergence of the Cleridae. Our results recovered Korynetinae sister to the remaining clerids, and the calde of Clerinae+Hydnocerinae is indicated more related to Tillinae. A time-calibrated phylogeny estimated the earliest divergence time of Cleridae was soon after the origin of the family, not later than 160.18 Mya (95% HPD: 158.18–162.07 Mya) during the mid-Jurassic. This is the first mitochondrial genome-based phylogenetic study of the Cleridae that covers nearly all subfamily members, which provides an alternative evidence for reconstructing the phylogenetic relationships. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|