An Image Detection Model for Aggressive Behavior of Group Sheep
Autor: | Yalei Xu, Jing Nie, Honglei Cen, Baoqin Wen, Shuangyin Liu, Jingbin Li, Jianbing Ge, Longhui Yu, Linze Lv |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Animals, Vol 13, Iss 23, p 3688 (2023) |
Druh dokumentu: | article |
ISSN: | 13233688 2076-2615 |
DOI: | 10.3390/ani13233688 |
Popis: | Sheep aggression detection is crucial for maintaining the welfare of a large-scale sheep breeding environment. Currently, animal aggression is predominantly detected using image and video detection methods. However, there is a lack of lightweight network models available for detecting aggressive behavior among groups of sheep. Therefore, this paper proposes a model for image detection of aggression behavior in group sheep. The proposed model utilizes the GhostNet network as its feature extraction network, incorporating the PWConv and Channel Shuffle operations into the GhostConv module. These additional modules improve the exchange of information between different feature maps. An ablation experiment was conducted to compare the detection effectiveness of the two modules in different positions. For increasing the amount of information in feature maps of the GhostBottleneck module, we applied the Inverted-GhostBottleneck module, which introduces inverted residual structure based on GhostBottleneck. The improved GhostNet lightweight feature extraction network achieves 94.7% Precision and 90.7% Recall, and its model size is only 62.7% of YOLOv5. Our improved model surpasses the original model in performance. Furthermore, it addresses the limitation of the video detection model, which was unable to accurately locate aggressive sheep. In real-time, our improved model successfully detects aggressive behavior among group sheep. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |