Autor: |
Rendao Ye, Bingni Fang, Weixiao Du, Kun Luo, Yiting Lu |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 10, Iss 6, p 921 (2022) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math10060921 |
Popis: |
In this paper, the inference on location parameter for the skew-normal population is considered when the scale parameter and skewness parameter are unknown. Firstly, the Bootstrap test statistics and Bootstrap confidence intervals for location parameter of single population are constructed based on the methods of moment estimation and maximum likelihood estimation, respectively. Secondly, the Behrens-Fisher type and interval estimation problems of two skew-normal populations are discussed. Thirdly, by the Monte Carlo simulation, the proposed Bootstrap approaches provide the satisfactory performances under the senses of Type I error probability and power in most cases regardless of the moment estimator or ML estimator. Further, the Bootstrap test based on the moment estimator is better than that based on the ML estimator in most situations. Finally, the above approaches are applied to the real data examples of leaf area index, carbon fibers’ strength and red blood cell count in athletes to verify the reasonableness and effectiveness of the proposed approaches. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|