Autor: |
W. Brent Lindquist, Svetlozar T. Rachev, Jagdish Gnawali, Frank J. Fabozzi |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Risks, Vol 12, Iss 9, p 136 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-9091 |
DOI: |
10.3390/risks12090136 |
Popis: |
We present a unified, market-complete model that integrates both Bachelier and Black–Scholes–Merton frameworks for asset pricing. The model allows for the study, within a unified framework, of asset pricing in a natural world that experiences the possibility of negative security prices or riskless rates. Unlike the classical Black–Scholes–Merton, we show that option pricing in the unified model differs depending on whether the replicating, self-financing portfolio uses riskless bonds or a single riskless bank account. We derive option price formulas and extend our analysis to the term structure of interest rates by deriving the pricing of zero-coupon bonds, forward contracts, and futures contracts. We identify a necessary condition for the unified model to support a perpetual derivative. Discrete binomial pricing under the unified model is also developed. In every scenario analyzed, we show that the unified model simplifies to the standard Black–Scholes–Merton pricing under specific limits and provides pricing in the Bachelier model limit. We note that the Bachelier limit within the unified model allows for positive riskless rates. The unified model prompts us to speculate on the possibility of a mixed multiplicative and additive deflator model for risk-neutral option pricing. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|