Autor: |
Michael L. Martini, Aly A. Valliani, Claire Sun, Anthony B. Costa, Shan Zhao, Fedor Panov, Saadi Ghatan, Kanaka Rajan, Eric Karl Oermann |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-021-86891-y |
Popis: |
Abstract Real-time seizure detection is a resource intensive process as it requires continuous monitoring of patients on stereoelectroencephalography. This study improves real-time seizure detection in drug resistant epilepsy (DRE) patients by developing patient-specific deep learning models that utilize a novel self-supervised dynamic thresholding approach. Deep neural networks were constructed on over 2000 h of high-resolution, multichannel SEEG and video recordings from 14 DRE patients. Consensus labels from a panel of epileptologists were used to evaluate model efficacy. Self-supervised dynamic thresholding exhibited improvements in positive predictive value (PPV; difference: 39.0%; 95% CI 4.5–73.5%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.03) with similar sensitivity (difference: 14.3%; 95% CI − 21.7 to 50.3%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.42) compared to static thresholds. In some models, training on as little as 10 min of SEEG data yielded robust detection. Cross-testing experiments reduced PPV (difference: 56.5%; 95% CI 25.8–87.3%; Wilcoxon–Mann–Whitney test; N = 14; p = 0.002), while multimodal detection significantly improved sensitivity (difference: 25.0%; 95% CI 0.2–49.9%; Wilcoxon–Mann–Whitney test; N = 14; p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|