Fatigue behaviour of a glass coating on Ti6AL4V for biomedical applications
Autor: | Juan José Pavón, E. Jiménez-Piqué, M. Anglada, E. Saiz, A. P. Tomsia |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Revista Facultad de Ingeniería Universidad de Antioquia, Iss 37 (2006) |
Druh dokumentu: | article |
ISSN: | 0120-6230 2422-2844 |
DOI: | 10.17533/udea.redin.343446 |
Popis: | The fixation of bone replacement implants to the hosting tissue can be improved if the implants have a bioactive surface that can precipitate hydroxyapatite in vivo. Titanium alloys, despite their desirable mechanical and nontoxic properties, are not bioactive and, therefore, do not bond directly to the bone. One of the ways to change a bioinert metallic surface is to coat it with a bioactive material. This work presents the evaluation of the fatigue behaviour by Hertzian (spherical) indentation of a glass coating on Ti6Al4V. This coating belongs to the SiO2-CaO-MgO-Na2OK2O- P2O5 system and, despite it can be used for corrosion protection, it has been specifically designed to be used as the inner layer of a bioactive bilayer coating with an outer layer of lower SiO2 content to ensure bioactivity. Hertzian monotonic tests allowed to obtain a damage sequence starting with three brittle damage events (ring, cone and radial cracking) followed by coating delamination associated to the plastic deformation of the substrate. The first brittle damage, ring cracking, was used as criteria for the evaluation of the stress-corrosion and cyclic loading cracking behaviour in air and in distilled water environments. Results showed sensitivity of the coating to degradation under both static and cyclic loadings which was considerably larger in distilled water due to the corrosion susceptibility of this glass. Delamination damage was also sensitive to Hertzian cyclic loading showing two different mechanisms depending of the maximum |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |