Autor: |
Yan Du, Shuo Wang, Fanlei Yang, Hao Xu, Yu Cheng, Jia Yu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Arthritis Research & Therapy, Vol 26, Iss 1, Pp 1-13 (2024) |
Druh dokumentu: |
article |
ISSN: |
1478-6362 |
DOI: |
10.1186/s13075-024-03402-w |
Popis: |
Abstract Background Untreated acute ankle sprains often result in chronic ankle instability (CAI) and can ultimately lead to the development of post-traumatic osteoarthritis (PTOA). At present, a typical animal model of ankle instability in mice is established by transecting the ligaments around the ankle joint. This study aimed to establish a grade I acute ankle sprain animal model by rapid stretching of peri-ankle joint ligaments. Furthermore, we tried to explore the pathophysiological mechanism of ankle osteoarthritis. Methods In all, 18 male C57BL/6 J mice (7 weeks) were randomly divided into three groups: calcaneofibular ligament (CFL) laxity group, deltoid ligament (DL) laxity group, and SHAM group. One week after the surgical procedure, all mice were trained to run in the mouse rotation fatigue machine daily. The mice were tested on the balance beam before surgery and three days, 4 weeks, 8 weeks, and 12 weeks after surgery. Footprint analyses were performed on each mouse before surgery and 12 weeks after surgery. Micro-CT scanning was then performed to evaluate the degeneration of ankle joints and histological staining was performed to analyze and evaluate PTOA caused by ankle joint instability. Results After surgery, the mice in the CFL and DL laxity groups took longer to cross the balance beam and slipped more often than those in the SHAM group (p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|