InstLane Dataset and Geometry-Aware Network for Instance Segmentation of Lane Line Detection
Autor: | Qimin Cheng, Jiajun Ling, Yunfei Yang, Kaiji Liu, Huanying Li, Xiao Huang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Remote Sensing, Vol 16, Iss 15, p 2751 (2024) |
Druh dokumentu: | article |
ISSN: | 16152751 2072-4292 |
DOI: | 10.3390/rs16152751 |
Popis: | Despite impressive progress, obtaining appropriate data for instance-level lane segmentation remains a significant challenge. This limitation hinders the refinement of granular lane-related applications such as lane line crossing surveillance, pavement maintenance, and management. To address this gap, we introduce a benchmark for lane instance segmentation called InstLane. To the best of our knowledge, InstLane constitutes the first publicly accessible instance-level segmentation standard for lane line detection. The complexity of InstLane emanates from the fact that the original data are procured using cameras mounted laterally, as opposed to traditional front-mounted sensors. InstLane encapsulates a range of challenging scenarios, enhancing the generalization and robustness of the lane line instance segmentation algorithms. In addition, we propose GeoLaneNet, a real-time, geometry-aware lane instance segmentation network. Within GeoLaneNet, we design a finer localization of lane proto-instances based on geometric features to counteract the prevalent omission or multiple detections in dense lane scenarios resulting from non-maximum suppression (NMS). Furthermore, we present a scheme that employs a larger receptive field to achieve profound perceptual lane structural learning, thereby improving detection accuracy. We introduce an architecture based on partial feature transformation to expedite the detection process. Comprehensive experiments on InstLane demonstrate that GeoLaneNet can achieve up to twice the speed of current State-Of-The-Artmethods, reaching 139 FPS on an RTX3090 and a mask AP of 73.55%, with a permissible trade-off in AP, while maintaining comparable accuracy. These results underscore the effectiveness, robustness, and efficiency of GeoLaneNet in autonomous driving. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |