Autor: |
Jicong Du, Lan Fang, Yuedong Wang, Jianpeng Zhao, Zhenlan Feng, Yike Yu, Duo Fang, Daqian Huang, Xuanlu Zhai, Ying Cheng, Rui Min, Fu Gao, Cong Liu |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Cell Communication and Signaling, Vol 22, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
1478-811X |
DOI: |
10.1186/s12964-024-01902-5 |
Popis: |
Abstract Intestinal stem cells (ISCs) are responsible for intestinal homeostasis and are important for the regeneration of damaged intestine. We established an ionizing radiation (IR)-induced intestinal injury model and observed that Gelsolin KO mice had increased radiosensitivity. The deletion of Gelsolin aggravated intestinal damage and reduced the number of ISCs after lethal IR. The intestinal organoid experiments showed that Gelsolin deletion inhibited ISCs function after IR. Notably, RNA sequencing and RT-PCR results showed IL-17 signaling pathway was down-regulated and Th17 cells differentiation was inhibited in Gelsolin KO mice. Moreover, recombinant IL-17 A ameliorated IR-induced intestinal injury and promoted ISCs regeneration. To figure out the role of Gelsolin in Th17 cells differentiation, flow cytometry was used and we found that Gelsolin targets Th17 cells functionality via the p-STAT3/RORγt axis. By establishing the co-culture system, we proved that Th17 cells promoted self-renewal and budding abilities in Gelsolin-deficient organoids. Finally, we found that Gelsolin was protective against DSS-induced colitis and that this protective effect was not specific or limited to the IR induced intestinal injury model. Based on these results, we proved Gelsolin maintained the regeneration of ISCs by sustaining Th17 cells functions via the p-STAT3/RORγt axis. Graphical abstract |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|