Comparison of the Performance of ANN and SVM Methods in Rainfall-Runoff Process Modeling (Case Study: North Karun Watershed)

Autor: S. H. Roshun, K. Shahedi, M. Habibnejad Roshan, J. Chormanski
Jazyk: perština
Rok vydání: 2021
Předmět:
Zdroj: علوم آب و خاک, Vol 25, Iss 2, Pp 77-90 (2021)
Druh dokumentu: article
ISSN: 2476-3594
2476-5554
Popis: The simulation of the rainfall-runoff process in the watershed has particular importance for a better understanding of hydrologic issues, water resources management, river engineering, flood control structures, and flood storage. In this study, to simulate the rainfall-runoff process, rainfall and discharge data were used in the period 1997-2017. After data qualitative control, rainfall, and discharge delays were determined using the coefficients of autocorrelation, partial autocorrelation, and cross-correlation in R Studio software. Then, the effective parameters and the optimum combination were determined by the Gamma test method and used to implement the model under three different scenarios in MATLAB software. Gamma test results showed that today's precipitation parameters, precipitation of the previous day, discharge of the previous day, and discharge of two days ago have the greatest effect on the outflow of the basin. Also, the Pt Qt-1 and Pt Pt-1 Qt-1 Qt-2 Qt-3 combinations were selected as the most suitable input combinations for modeling. The results of the modeling showed that in the support vector machine model, the Radial Base kernel Function (RBF) has a better performance than multiple and linear kernels. Also, the performance of the Artificial Neural Network model (ANN) is better than the Support Vector Machine model (SVM) with Radial Base kernel Function (RBF).
Databáze: Directory of Open Access Journals