Ricci almost solitons and gradient Ricci almost solitons in $(k,\mu)$-paracontact geometry

Autor: Uday Chand De, Krishanu Mandal
Jazyk: English<br />Portuguese
Rok vydání: 2019
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 37, Iss 3, Pp 119-130 (2019)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.v37i3.33027
Popis: The purpose of this paper is to study Ricci almost soliton and gradient Ricci almost soliton in $(k,\mu)$-paracontact metric manifolds. We prove the non-existence of Ricci almost soliton in a $(k,\mu)$-paracontact metric manifold $M$ with $k-1$ and whose potential vector field is the Reeb vector field $\xi$. Further, if the metric $g$ of a $(k,\mu)$-paracontact metric manifold $M^{2n+1}$ with $k\neq-1$ is a gradient Ricci almost soliton, then we prove either the manifold is locally isometric to a product of a flat $(n+1)$-dimensional manifold and an $n$-dimensional manifold of negative constant curvature equal to $-4$, or, $M^{2n+1}$ is an Einstein manifold.
Databáze: Directory of Open Access Journals