Popis: |
Much of our everyday, embodied action comes in the form of smooth coping. Smooth coping is skillful action that has become habituated and ingrained, generally placing less stress on cognitive load than considered and deliberative thought and action. When performed with skill and expertise, walking, driving, skiing, musical performances, and short-order cooking are all examples of the phenomenon. Smooth coping is characterized by its rapidity and relative lack of reflection, both being hallmarks of automatization. Deliberative and reflective actions provide the contrast case. In Dreyfus’ classic view, smooth coping is “mindless” absorption into action, being in the flow, and any reflective thought will only interrupt this flow. Building on the pragmatist account of Dewey, others, such as Sutton, Montero, and Gallagher, insist on the intelligent flexibility built into smooth coping, suggesting that it is not equivalent to automatization. We seek to answer two complementary challenges in this article. First, how might we model smooth coping in autonomous agents (natural or artificial) at fine granularity? Second, we use this model of smooth coping to show how we might implement smooth coping in artificial intelligent agents. We develop a conceptual model of smooth coping in LIDA (Learning Intelligent Decision Agent). LIDA is an embodied cognitive architecture implementing the global workspace theory of consciousness, among other psychological theories. LIDA’s implementation of consciousness enables us to account for the phenomenology of smooth coping, something that few cognitive architectures would be able to do. Through the fine granular analysis of LIDA, we argue that smooth coping is a sequence of automatized actions intermittently interspersed with consciously mediated action selection, supplemented by dorsal stream processes. In other words, non-conscious, automatized actions (whether learned or innate) often require occasional bursts of conscious cognition to achieve the skillful and flexible adjustments of smooth coping. In addition, never-conscious dorsal stream information and associated sensorimotor processes provide further online adjustments during smooth coping. To achieve smooth coping in LIDA we introduce a new module to the LIDA cognitive architecture the Automatized Action Selection sub-module. Our complex model of smooth coping borrows notions of “embodied intelligence” from enactivism and augments these by allowing representations and more detailed mechanisms of conscious control. We explore several extended examples of smooth coping, starting from basic activities like walking and scaling up to more complex tasks like driving and short-order cooking. |