Resistance of an Optimized Ultra-High Performance Fiber Reinforced Concrete to Projectile Impact

Autor: Anna L. Mina, Michael F. Petrou, Konstantinos G. Trezos
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Buildings, Vol 11, Iss 2, p 63 (2021)
Druh dokumentu: article
ISSN: 2075-5309
DOI: 10.3390/buildings11020063
Popis: The scope of this paper is to investigate the performance of ultra-high performance fiber reinforced concrete (UHPFRC) concrete slabs, under projectile impact. Mixture performance under impact loading was examined using bullets with 7.62 mm diameter and initial velocity 800 m/s. The UHPFRC, used in this study, consists of a combination of steel fibers of two lengths: 6 mm and 13 mm with the same diameter of 0.16 mm. Six composition mixtures were tested, four UHPFRC, one ultra-high performance concrete (UHPC), without steel fibers, and high strength concrete (HSC). Slabs with thicknesses of 15, 30, 50, and 70 mm were produced and subjected to real shotgun fire in the field. Penetration depth, material volume loss, and crater diameter were measured and analyzed. The test results show that the mixture with a combination of 3% 6 mm and 3% of 13 mm length of steel fibers exhibited the best resistance to projectile impact and only the slabs with 15 mm thickness had perforation. Empirical models that predict the depth of penetration were compared with the experimental results. This material can be used as an overlay to buildings or to construct small precast structures.
Databáze: Directory of Open Access Journals