Multi-Agent Deep Reinforcement Learning Based Dynamic Task Offloading in a Device-to-Device Mobile-Edge Computing Network to Minimize Average Task Delay with Deadline Constraints

Autor: Huaiwen He, Xiangdong Yang, Xin Mi, Hong Shen, Xuefeng Liao
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Sensors, Vol 24, Iss 16, p 5141 (2024)
Druh dokumentu: article
ISSN: 1424-8220
47904348
DOI: 10.3390/s24165141
Popis: Device-to-device (D2D) is a pivotal technology in the next generation of communication, allowing for direct task offloading between mobile devices (MDs) to improve the efficient utilization of idle resources. This paper proposes a novel algorithm for dynamic task offloading between the active MDs and the idle MDs in a D2D–MEC (mobile edge computing) system by deploying multi-agent deep reinforcement learning (DRL) to minimize the long-term average delay of delay-sensitive tasks under deadline constraints. Our core innovation is a dynamic partitioning scheme for idle and active devices in the D2D–MEC system, accounting for stochastic task arrivals and multi-time-slot task execution, which has been insufficiently explored in the existing literature. We adopt a queue-based system to formulate a dynamic task offloading optimization problem. To address the challenges of large action space and the coupling of actions across time slots, we model the problem as a Markov decision process (MDP) and perform multi-agent DRL through multi-agent proximal policy optimization (MAPPO). We employ a centralized training with decentralized execution (CTDE) framework to enable each MD to make offloading decisions solely based on its local system state. Extensive simulations demonstrate the efficiency and fast convergence of our algorithm. In comparison to the existing sub-optimal results deploying single-agent DRL, our algorithm reduces the average task completion delay by 11.0% and the ratio of dropped tasks by 17.0%. Our proposed algorithm is particularly pertinent to sensor networks, where mobile devices equipped with sensors generate a substantial volume of data that requires timely processing to ensure quality of experience (QoE) and meet the service-level agreements (SLAs) of delay-sensitive applications.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje