Classification of crystallization outcomes using deep convolutional neural networks.

Autor: Andrew E Bruno, Patrick Charbonneau, Janet Newman, Edward H Snell, David R So, Vincent Vanhoucke, Christopher J Watkins, Shawn Williams, Julie Wilson
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: PLoS ONE, Vol 13, Iss 6, p e0198883 (2018)
Druh dokumentu: article
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0198883
Popis: The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje