An atlas of K3 surfaces with finite automorphism group

Autor: Xavier Roulleau
Jazyk: English<br />French
Rok vydání: 2022
Předmět:
Zdroj: Épijournal de Géométrie Algébrique, Vol Volume 6 (2022)
Druh dokumentu: article
ISSN: 2491-6765
DOI: 10.46298/epiga.2022.6286
Popis: We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study moreover the configurations of their finite set of $(-2)$-curves.
Databáze: Directory of Open Access Journals