An atlas of K3 surfaces with finite automorphism group
Autor: | Xavier Roulleau |
---|---|
Jazyk: | English<br />French |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Épijournal de Géométrie Algébrique, Vol Volume 6 (2022) |
Druh dokumentu: | article |
ISSN: | 2491-6765 |
DOI: | 10.46298/epiga.2022.6286 |
Popis: | We study the geometry of the K3 surfaces $X$ with a finite number automorphisms and Picard number $\geq 3$. We describe these surfaces classified by Nikulin and Vinberg as double covers of simpler surfaces or embedded in a projective space. We study moreover the configurations of their finite set of $(-2)$-curves. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |