Machine learning corrected quantum dynamics calculations

Autor: A. Jasinski, J. Montaner, R. C. Forrey, B. H. Yang, P. C. Stancil, N. Balakrishnan, J. Dai, R. A. Vargas-Hernández, R. V. Krems
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Physical Review Research, Vol 2, Iss 3, p 032051 (2020)
Druh dokumentu: article
ISSN: 2643-1564
DOI: 10.1103/PhysRevResearch.2.032051
Popis: Quantum scattering calculations for all but low-dimensional systems at low energies must rely on approximations. All approximations introduce errors. The impact of these errors is often difficult to assess because they depend on the Hamiltonian parameters and the particular observable under study. Here, we illustrate a general, system- and approximation-independent, approach to improve the accuracy of quantum dynamics approximations. The method is based on a Bayesian machine learning (BML) algorithm that is trained by a small number of exact results and a large number of approximate calculations, resulting in ML models that can generalize exact quantum results to different dynamical processes. Thus, a ML model trained by a combination of approximate and rigorous results for a certain inelastic transition can make accurate predictions for different transitions without rigorous calculations. This opens the possibility of improving the accuracy of approximate calculations for quantum transitions that are out of reach of exact scattering theory.
Databáze: Directory of Open Access Journals