A Note on the Sobolev and Gagliardo--Nirenberg Inequality when 𝑝 > 𝑁

Autor: Porretta Alessio
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Advanced Nonlinear Studies, Vol 20, Iss 2, Pp 361-371 (2020)
Druh dokumentu: article
ISSN: 1536-1365
2169-0375
DOI: 10.1515/ans-2020-2086
Popis: It is known that the Sobolev space W1,p⁢(ℝN){W^{1,p}(\mathbb{R}^{N})} is embedded into LN⁢p/(N-p)⁢(ℝN){L^{Np/(N-p)}(\mathbb{R}^{N})} if pN{p>N}. There is usually a discontinuity in the proof of those two different embeddings since, for p>N{p>N}, the estimate ∥u∥∞≤C⁢∥D⁢u∥pN/p⁢∥u∥p1-N/p{\lVert u\rVert_{\infty}\leq C\lVert Du\rVert_{p}^{N/p}\lVert u\rVert_{p}^{1-N% /p}} is commonly obtained together with an estimate of the Hölder norm. In this note, we give a proof of the L∞{L^{\infty}}-embedding which only follows by an iteration of the Sobolev–Gagliardo–Nirenberg estimate ∥u∥N/(N-1)≤C⁢∥D⁢u∥1{\lVert u\rVert_{N/(N-1)}\leq C\lVert Du\rVert_{1}}. This kind of proof has the advantage to be easily extended to anisotropic cases and immediately exported to the case of discrete Lebesgue and Sobolev spaces; we give sample results in case of finite differences and finite volumes schemes.
Databáze: Directory of Open Access Journals