Quasi-subfield Polynomials and the Elliptic Curve Discrete Logarithm Problem
Autor: | Huang Ming-Deh, Kosters Michiel, Petit Christophe, Yeo Sze Ling, Yun Yang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Mathematical Cryptology, Vol 14, Iss 1, Pp 25-38 (2020) |
Druh dokumentu: | article |
ISSN: | 1862-2976 1862-2984 |
DOI: | 10.1515/jmc-2015-0049 |
Popis: | We initiate the study of a new class of polynomials which we call quasi-subfield polynomials. First, we show that this class of polynomials could lead to more efficient attacks for the elliptic curve discrete logarithm problem via the index calculus approach. Specifically, we use these polynomials to construct factor bases for the index calculus approach and we provide explicit complexity bounds. Next, we investigate the existence of quasi-subfield polynomials. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |