Transient voltage stresses in MMC–HVDC links – impulse analysis and novel proposals for synthetic laboratory generation
Autor: | Claudius Freye, Simon Wenig, Max Goertz, Thomas Leibfried, Frank Jenau |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: |
HVDC power transmission
HVDC power convertors curve fitting transient voltage stresses MMC-HVDC links synthetic laboratory generation insulation coordination concepts high-voltage direct current transmission systems laboratory imitation monopolar modular multilevel converter applied switching impulse shapes synthetic laboratory test voltage generation simulated transients fault scenarios symmetrical monopolar schemes simulated overvoltages standard test voltage shapes nonstandard impulses single-stage circuits dielectric effects nonnormative overvoltages Electrical engineering. Electronics. Nuclear engineering TK1-9971 Electricity QC501-721 |
Zdroj: | High Voltage (2018) |
Druh dokumentu: | article |
ISSN: | 2397-7264 |
DOI: | 10.1049/hve.2017.0141 |
Popis: | To evaluate and optimise insulation coordination concepts for state of the art high-voltage direct current (HVDC) transmission systems, appropriate test voltage shapes are required for laboratory imitation of occurring stresses. While especially transient voltages in the monopolar modular multilevel converter (MMC)–HVDC links show an extensive deviation from commonly applied switching impulse shapes, this study focusses on the analysis of over-voltages subsequent to direct current pole to ground faults. Additionally, novel methods for synthetic laboratory test voltage generation are proposed. Based on simulated transients occurring during fault scenarios in different symmetrical monopolar ±320 kV MMC–HVDC schemes, curve fitting, and related analysis techniques are used in order to compare simulated over-voltages with standard test voltage shapes. Moreover, these techniques further allow the identification of novel relevant impulse characteristics. Subsequently, design considerations for the generation of non-standard impulses based on single-stage circuits are derived and discussed. Those synthetically generated voltages may, later on, provide the basis for future investigations on related dielectric effects caused by those non-normative over-voltages. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |