Autor: |
Jose Francisco Saenz-Cogollo, Maurizio Agelli |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
Algorithms, Vol 13, Iss 4, p 75 (2020) |
Druh dokumentu: |
article |
ISSN: |
1999-4893 |
DOI: |
10.3390/a13040075 |
Popis: |
Finding an optimal combination of features and classifier is still an open problem in the development of automatic heartbeat classification systems, especially when applications that involve resource-constrained devices are considered. In this paper, a novel study of the selection of informative features and the use of a random forest classifier while following the recommendations of the Association for the Advancement of Medical Instrumentation (AAMI) and an inter-patient division of datasets is presented. Features were selected using a filter method based on the mutual information ranking criterion on the training set. Results showed that normalized beat-to-beat (R−R) intervals and features relative to the width of the ventricular depolarization waves (QRS complex) are the most discriminative among those considered. The best results achieved on the MIT-BIH Arrhythmia Database were an overall accuracy of 96.14% and F1-scores of 97.97%, 73.06%, and 90.85% in the classification of normal beats, supraventricular ectopic beats, and ventricular ectopic beats, respectively. In comparison with other state-of-the-art approaches tested under similar constraints, this work represents one of the highest performances reported to date while relying on a very small feature vector. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|