Autor: |
Hari P. Paudel, Gary R. Lander, Scott E. Crawford, Yuhua Duan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nanomaterials, Vol 14, Iss 8, p 675 (2024) |
Druh dokumentu: |
article |
ISSN: |
2079-4991 |
DOI: |
10.3390/nano14080675 |
Popis: |
The sensing of stress under harsh environmental conditions with high resolution has critical importance for a range of applications including earth’s subsurface scanning, geological CO2 storage monitoring, and mineral and resource recovery. Using a first-principles density functional theory (DFT) approach combined with the theoretical modelling of the low-energy Hamiltonian, here, we investigate a novel approach to detect unprecedented levels of pressure by taking advantage of the solid-state electronic spin of nitrogen-vacancy (NV) centers in diamond. We computationally explore the effect of strain on the defect band edges and band gaps by varying the lattice parameters of a diamond supercell hosting a single NV center. A low-energy Hamiltonian is developed that includes the effect of stress on the energy level of a ±1 spin manifold at the ground state. By quantifying the energy level shift and split, we predict pressure sensing of up to 0.3 MPa/Hz using the experimentally measured spin dephasing time. We show the superiority of the quantum sensing approach over traditional optical sensing techniques by discussing our results from DFT and theoretical modelling for the frequency shift per unit pressure. Importantly, we propose a quantum manometer that could be useful to measure earth’s subsurface vibrations as well as for pressure detection and monitoring in high-temperature superconductivity studies and in material sciences. Our results open avenues for the development of a sensing technology with high sensitivity and resolution under extreme pressure limits that potentially has a wider applicability than the existing pressure sensing technologies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|