Autor: |
Hua Xin, Yuhlong Lio, Ya-Yen Fan, Tzong-Ru Tsai |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 12, p 1828 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12121828 |
Popis: |
The bias of the maximum likelihood estimator can cause a considerable estimation error if the sample size is small. To reduce the bias of the maximum likelihood estimator under the small sample situation, the maximum likelihood and parametric bootstrap bias-correction methods are proposed in this study to obtain more reliable maximum likelihood estimators of the unit exponential distribution parameters. The procedure to implement the bias-corrected maximum likelihood estimation method is derived analytically, and the steps to obtain the bias-corrected bootstrap estimators are presented. The simulation results show that the proposed maximum likelihood bootstrap bias-correction method can significantly reduce the bias and mean squared error of the maximum likelihood estimators for most of the parameter combinations in the simulation study. A soil moisture data set and a numerical example are used for illustration. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|