Bias-Correction Methods for the Unit Exponential Distribution and Applications

Autor: Hua Xin, Yuhlong Lio, Ya-Yen Fan, Tzong-Ru Tsai
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Mathematics, Vol 12, Iss 12, p 1828 (2024)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math12121828
Popis: The bias of the maximum likelihood estimator can cause a considerable estimation error if the sample size is small. To reduce the bias of the maximum likelihood estimator under the small sample situation, the maximum likelihood and parametric bootstrap bias-correction methods are proposed in this study to obtain more reliable maximum likelihood estimators of the unit exponential distribution parameters. The procedure to implement the bias-corrected maximum likelihood estimation method is derived analytically, and the steps to obtain the bias-corrected bootstrap estimators are presented. The simulation results show that the proposed maximum likelihood bootstrap bias-correction method can significantly reduce the bias and mean squared error of the maximum likelihood estimators for most of the parameter combinations in the simulation study. A soil moisture data set and a numerical example are used for illustration.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje