YOLOv7 Applied to Livestock Image Detection and Segmentation Tasks in Cattle Grazing Behavior, Monitor and Intrusions

Autor: O. M. Moradeyo, A. S. Olaniyan, A. O. Ojoawo, J. A. Olawale, R. W. Bello
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Journal of Applied Sciences and Environmental Management, Vol 27, Iss 5 (2023)
Druh dokumentu: article
ISSN: 2659-1502
2659-1499
DOI: 10.4314/jasem.v27i5.10
Popis: You only look once (YOLO) is a state-of-the-art, real-time object detection system. YOLO version 7 (YOLOv7) model is a variant of YOLO. The objective of this paper is to apply YOLOv7 to livestock image detection and segmentation tasks in cattle grazing behavior, monitor and intrusions. Data obtained revealed that YOLOv7 performs better in terms of speed and accuracy with a mAP of 0.95 than the baseline techniques.
Databáze: Directory of Open Access Journals