Autor: |
Bin Tian, Lichun Yang, Jianwu Dang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Scientific Reports, Vol 13, Iss 1, Pp 1-11 (2023) |
Druh dokumentu: |
article |
ISSN: |
2045-2322 |
DOI: |
10.1038/s41598-023-29584-y |
Popis: |
Abstract Multi-focus image fusion is a process of fusing multiple images of different focus areas into a total focus image, which has important application value. In view of the defects of the current fusion method in the detail information retention effect of the original image, a fusion architecture based on two stages is designed. In the training phase, combined with the polarized self-attention module and the DenseNet network structure, an encoder-decoder structure network is designed for image reconstruction tasks to enhance the original information retention ability of the model. In the fusion stage, combined with the encoded feature map, a fusion strategy based on edge feature map is designed for image fusion tasks to enhance the attention ability of detail information in the fusion process. Compared with 9 classical fusion algorithms, the proposed algorithm has achieved advanced fusion performance in both subjective and objective evaluations, and the fused image has better information retention effect on the original image. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|