Popis: |
Abstract We study a recently proposed modification of the Skyrme model that possesses an exact self-dual sector leading to an infinity of exact Skyrmion solutions with arbitrary topological (baryon) charge. The self-dual sector is made possible by the introduction, in addition to the usual three SU(2) Skyrme fields, of six scalar fields assembled in a symmetric and invertible three dimensional matrix h. The action presents quadratic and quartic terms in derivatives of the Skyrme fields, but instead of the group indices being contracted by the SU(2) Killing form, they are contracted with the h-matrix in the quadratic term, and by its inverse on the quartic term. Due to these extra fields the static version of the model, as well as its self-duality equations, are conformally invariant on the three dimensional space ℝ3. We show that the static and self-dual sectors of such a theory are equivalent, and so the only non-self-dual solution must be time dependent. We also show that for any configuration of the Skyrme SU(2) fields, the h-fields adjust themselves to satisfy the self-duality equations, and so the theory has plenty of non-trivial topological solutions. We present explicit exact solutions using a holomorphic rational ansatz, as well as a toroidal ansatz based on the conformal symmetry. We point to possible extensions of the model that break the conformal symmetry as well as the self-dual sector, and that can perhaps lead to interesting physical applications. |