Autor: |
Peter Collings, Andrew Mckeown, Enhua Wang, Zhibin Yu |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Energies, Vol 12, Iss 8, p 1452 (2019) |
Druh dokumentu: |
article |
ISSN: |
1996-1073 |
DOI: |
10.3390/en12081452 |
Popis: |
While large-scale ORC power plants are a relatively mature technology, their application to small-scale power plants (i.e., below 10 kW) still encounters some technical challenges. Positive displacement expanders are mostly used for such small-scale applications. However, their built-in expansion ratios are often smaller than the expansion ratio required for the maximum utilisation of heat sources, leading to under expansion and consequently higher enthalpy at the outlet of the expander, and ultimately resulting in a lower thermal efficiency. In order to overcome this issue, one possible solution is to introduce an internal heat exchanger (i.e., the so-called regenerator) to recover the enthalpy exiting the expander and use it to pre-heat the liquid working fluid before it enters the evaporator. In this paper, a small-scale experimental rig (with 1-kW rated power) was designed and built that is capable of switching between regenerative and non-regenerative modes, using R245fa as the working fluid. It has been tested under various operating conditions, and the results reveal that the regenerative heat exchanger can recover a considerable amount of heat when under expansion occurs, increasing the cycle efficiency. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|