Autor: |
Yashuang Li, Lin Yang, Dongmei Hao, Yu Chen, Yiyao Ye-Lin, Chiang-Shan Ray Li, Guangfei Li |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Brain Sciences, Vol 14, Iss 6, p 610 (2024) |
Druh dokumentu: |
article |
ISSN: |
2076-3425 |
DOI: |
10.3390/brainsci14060610 |
Popis: |
Alcohol misuse is associated with altered punishment and reward processing. Here, we investigated neural network responses to reward and punishment and the molecular profiles of the connectivity features predicting alcohol use severity in young adults. We curated the Human Connectome Project data and employed connectome-based predictive modeling (CPM) to examine how functional connectivity (FC) features during wins and losses are associated with alcohol use severity, quantified by Semi-Structured Assessment for the Genetics of Alcoholism, in 981 young adults. We combined the CPM findings and the JuSpace toolbox to characterize the molecular profiles of the network connectivity features of alcohol use severity. The connectomics predicting alcohol use severity appeared specific, comprising less than 0.12% of all features, including medial frontal, motor/sensory, and cerebellum/brainstem networks during punishment processing and medial frontal, fronto-parietal, and motor/sensory networks during reward processing. Spatial correlation analyses showed that these networks were associated predominantly with serotonergic and GABAa signaling. To conclude, a distinct pattern of network connectivity predicted alcohol use severity in young adult drinkers. These “neural fingerprints” elucidate how alcohol misuse impacts the brain and provide evidence of new targets for future intervention. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|