Internal Variable Theory in Viscoelasticity: Fractional Generalizations and Thermodynamical Restrictions

Autor: Teodor M. Atanackovic, Cemal Dolicanin, Enes Kacapor
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Mathematics, Vol 10, Iss 10, p 1708 (2022)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math10101708
Popis: Here, we study the internal variable approach to viscoelasticity. First, we generalize the classical approach by introducing a fractional derivative into the equation for time evolution of the internal variables. Next, we derive restrictions on the coefficients that follow from the dissipation inequality (entropy inequality under isothermal conditions). In the example of wave propagation, we show that the restrictions that follow from entropy inequality are sufficient to guarantee the existence of the solution. We present a numerical solution to the wave equation for several values of the parameters.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje