Autor: |
Zhao Xiaoqing, Yi Yuan |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
AIMS Mathematics, Vol 9, Iss 12, Pp 33591-33609 (2024) |
Druh dokumentu: |
article |
ISSN: |
2473-6988 |
DOI: |
10.3934/math.20241603?viewType=HTML |
Popis: |
Let $ q $ be a sufficiently large odd integer, and let $ c \in\left(1, \frac{4}{3}\right) $. We denote $ R(c; q) $ as the count of square-free numbers in the intersection of the Lehmer set and the Piatetski-Shapiro sequence. By employing additive character properties to transform congruence equations and applying Kloosterman sums and methods of exponential sums, we derive a sharp asymptotic formula as $ q $ approaches infinity, which is significant for understanding the distribution properties of the Lehmer problem. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|