Some properties of Square element graphs over semigroups

Autor: Bijon Biswas, Raibatak Sen Gupta, M.K. Sen, S. Kar
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: AKCE International Journal of Graphs and Combinatorics, Vol 17, Iss 1, Pp 118-130 (2020)
Druh dokumentu: article
ISSN: 0972-8600
2543-3474
DOI: 10.1016/j.akcej.2019.02.001
Popis: The Square element graph over a semigroup is a simple undirected graph whose vertex set consists precisely of all the non-zero elements of , and two vertices are adjacent if and only if either or belongs to the set , where 1 is the identity of the semigroup (if it exists). In this paper, we study the various properties of . In particular, we concentrate on square element graphs over three important classes of semigroups. First, we consider the semigroup formed by the ideals of . Afterwards, we consider the symmetric groups and the dihedral groups . For each type of semigroups mentioned, we look into the structural and other graph-theoretic properties of the corresponding square element graphs.
Databáze: Directory of Open Access Journals