Some properties of Square element graphs over semigroups
Autor: | Bijon Biswas, Raibatak Sen Gupta, M.K. Sen, S. Kar |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | AKCE International Journal of Graphs and Combinatorics, Vol 17, Iss 1, Pp 118-130 (2020) |
Druh dokumentu: | article |
ISSN: | 0972-8600 2543-3474 |
DOI: | 10.1016/j.akcej.2019.02.001 |
Popis: | The Square element graph over a semigroup is a simple undirected graph whose vertex set consists precisely of all the non-zero elements of , and two vertices are adjacent if and only if either or belongs to the set , where 1 is the identity of the semigroup (if it exists). In this paper, we study the various properties of . In particular, we concentrate on square element graphs over three important classes of semigroups. First, we consider the semigroup formed by the ideals of . Afterwards, we consider the symmetric groups and the dihedral groups . For each type of semigroups mentioned, we look into the structural and other graph-theoretic properties of the corresponding square element graphs. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |