Process optimization and mechanical properties analysis of Inconel 718/stainless steel 316 L multi-material via direct energy deposition

Autor: Yu-Xiang Chen, Jun-Ru Qiu, Wei-Ling Chang, Yi-Kai Hwang, Sheng-Jye Hwang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-21 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-80350-0
Popis: Abstract Additive manufacturing (AM), also known as 3D printing, is a recent innovation in manufacturing, employing additive techniques rather than traditional subtractive methods. This study focuses on Directed Energy Deposition (DED), utilizing a blend of nickel-based superalloy IN 718 and stainless steel SS316 powders in varying ratios (25%+75%, 50%, and 75%+25%). The objective is to assess the impact of process parameters on quality and optimize them. Mechanical properties of the different powder mixtures are compared. In the study, Taguchi-grey relational analysis is employed for parameter optimization, with four key factors identified: laser power, overlap ratio, powder feed rate, and scanning speed, affecting cladding efficiency, deposition rate, and porosity. Verification experiments confirm optimization repeatability, and further fine-tuning is achieved through one-factor-at-a-time experiments. Optimized parameters yield varied tensile properties among different powder mixtures; for example, a 25% SS316L and 75% IN718 blend demonstrates the highest ultimate tensile strength (499.37 MPa), while a 50% SS316L and 50% IN718 blend exhibits the best elongation (13.53%). This study offers an effective approach for using DED technology to create mixed SS316 and IN718 powders, enabling tailored mechanical performance based on mixing ratios.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje