Cyclic codes over non-chain ring R(α1,α2,…,αs) and their applications to quantum and DNA codes

Autor: Shakir Ali, Amal S. Alali, Kok Bin Wong, Elif Segah Oztas, Pushpendra Sharma
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: AIMS Mathematics, Vol 9, Iss 3, Pp 7396-7413 (2024)
Druh dokumentu: article
ISSN: 2473-6988
DOI: 10.3934/math.2024358?viewType=HTML
Popis: Let $ s \geq 1 $ be a fixed integer. In this paper, we focus on generating cyclic codes over the ring $ \mathcal{R}(\alpha_1, \alpha_2, \ldots, \alpha_s) $, where $ \alpha_i \in \mathbb{F}_q\backslash \{0\} $, $ 1 \leq i \leq s $, by using the Gray map that is defined by the idempotents. Moreover, we describe the process to generate an idempotent by using the formula (2.1). As applications, we obtain both optimal and new quantum codes. Additionally, we solve the DNA reversibility problem by introducing $ \mathbb{F}_q $ reversibility. The aim to introduce the $ \mathbb{F}_q $ reversibility is to describe IUPAC nucleotide codes, and consequently, 5 IUPAC DNA bases are considered instead of 4 DNA bases $ (A, \; T, \; G, \; C) $.
Databáze: Directory of Open Access Journals