POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

Autor: A. M. Ivashko, V. E. Kisel, N. V. Kuleshov
Jazyk: English<br />Russian
Rok vydání: 2017
Předmět:
Zdroj: Pribory i Metody Izmerenij, Vol 8, Iss 3, Pp 222-227 (2017)
Druh dokumentu: article
ISSN: 2220-9506
2414-0473
DOI: 10.21122/2220-9506-2017-8-3-222-227
Popis: Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone.
Databáze: Directory of Open Access Journals