Experimental study on the freezing process of water droplets for ice air jet technology

Autor: Hu Jingru, Li Jingbin, Huang Zhongwei, Cheng Kang, Xia Haojun
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-024-53730-9
Popis: Abstract Ice air jet technology is one non-destructive, residue-free and environmentally friendly machining process. It is an efficient method to form ice particles by atomizing water droplets in ultra-low temperature environment. The freezing characteristics of water droplets in cryogenic gas and liquid nitrogen environment are visually analyzed, and the effects of droplet volume, ambient temperature are also studied. The results show that when water droplets freeze in a cryogenic gas environment, four distinct stages are observed, namely pre-cooling stage, recalescence stage, solidification stage, and deep cooling stage. However, when water droplets freeze in liquid nitrogen, the recalescence stage cannot be observed. For a 5 µl water droplet, it takes 68 s for water droplets to freeze into ice particles at − 20.36 °C, while it takes only 1.7 s in liquid nitrogen. During the freezing process, the water droplets form an ice shell outside and freeze inwardly. Ice particles may break up due to differences in solubility and density. With the increase of volume the time spent on pre-cooling stage and freezing stage both increases. For the large latent heat of water phase transformation, the solidification stage time is greatly affected by the volume of water droplets. When the ambient temperature drops from − 10.67 °C to − 24.68 °C, the freezing time of 5 µl water droplets decreases by 45.5%, indicating that the ambient temperature has a great influence on the freezing time. The results of the study can significantly contribute to the development of ice air jet technology.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje