On the asymptotic behavior of \(L_{p}\) extremal polynomials
Autor: | Yamina Laskri, Rachid Benzine |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2005 |
Předmět: | |
Zdroj: | Journal of Numerical Analysis and Approximation Theory, Vol 34, Iss 2 (2005) |
Druh dokumentu: | article |
ISSN: | 2457-6794 2501-059X |
Popis: | Let \(\beta \) denote a positive Szeg? measure on the unit circle \(\Gamma \) and \(\delta _{z_{k}}\) denote an anatomic measure (\(\delta \) Dirac) centered on the point \(z_{k}.\) We study, for all \(p>0,\) the asymptotic behavior of \(L_{p}\) extremal polynomials with respect to a measure of the type \[ \alpha =\beta +\sum_{k=1}^{\infty }A_{k}\delta _{z_{k}}, \] where \(\left\{ z_{k}\right\} _{k=1}^{\infty }\) is an infinite collection of points outside \(\Gamma \). |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |