On the asymptotic behavior of \(L_{p}\) extremal polynomials

Autor: Yamina Laskri, Rachid Benzine
Jazyk: angličtina
Rok vydání: 2005
Předmět:
Zdroj: Journal of Numerical Analysis and Approximation Theory, Vol 34, Iss 2 (2005)
Druh dokumentu: article
ISSN: 2457-6794
2501-059X
Popis: Let \(\beta \) denote a positive Szeg? measure on the unit circle \(\Gamma \) and \(\delta _{z_{k}}\) denote an anatomic measure (\(\delta \) Dirac) centered on the point \(z_{k}.\) We study, for all \(p>0,\) the asymptotic behavior of \(L_{p}\) extremal polynomials with respect to a measure of the type \[ \alpha =\beta +\sum_{k=1}^{\infty }A_{k}\delta _{z_{k}}, \] where \(\left\{ z_{k}\right\} _{k=1}^{\infty }\) is an infinite collection of points outside \(\Gamma \).
Databáze: Directory of Open Access Journals