Autor: |
Schnoor Laura, Roehrs Sonja, Steinau Hans, Daigeler Adrien, Homann Heinz, Kuhnen Cornelius, Klein-Hitpass Ludger, Lehnhardt Marcus, Steinstraesser Lars, Mueller Oliver |
Jazyk: |
angličtina |
Rok vydání: |
2005 |
Předmět: |
|
Zdroj: |
BMC Cancer, Vol 5, Iss 1, p 74 (2005) |
Druh dokumentu: |
article |
ISSN: |
1471-2407 |
DOI: |
10.1186/1471-2407-5-74 |
Popis: |
Abstract Background Because of the high resistance rate of fibrosarcomas against cytotoxic agents clinical chemotherapy of these tumors is not established. A better understanding of the diverse modes of tumor cell death following cytotoxic therapies will provide a molecular basis for new chemotherapeutic strategies. In this study we elucidated the response of a fibrosarcoma cell line to clinically used cytostatic agents on the level of gene expression. Methods HT1080 fibrosarcoma cells were exposed to the chemotherapeutic agents doxorubicin, actinomycin D or vincristine. Total RNA was isolated and the gene expression patterns were analyzed by microarray analysis. Expression levels for 46 selected candidate genes were validated by quantitative real-time PCR. Results The analysis of the microarray data resulted in 3.309 (actinomycin D), 1.019 (doxorubicin) and 134 (vincristine) probesets that showed significant expression changes. For the RNA synthesis blocker actinomycin D, 99.4% of all differentially expressed probesets were under-represented. In comparison, probesets down-regulated by doxorubicin comprised only 37.4% of all genes effected by this agent. Closer analysis of the differentially regulated genes revealed that doxorubicin induced cell death of HT1080 fibrosarcoma cells mainly by regulating the abundance of factors mediating the mitochondrial (intrinsic) apoptosis pathway. Furthermore doxorubicin influences other pathways and crosstalk to other pathways (including to the death receptor pathway) at multiple levels. We found increased levels of cytochrome c, APAF-1 and members of the STAT-family (STAT1, STAT3), while Bcl-2 expression was decreased. Caspase-1, -3, -6, -8, and -9 were increased indicating that these proteases are key factors in the execution of doxorubicin mediated apoptosis. Conclusion This study demonstrates that chemotherapy regulates the expression of apoptosis-related factors in fibrosarcoma cells. The number and the specific pattern of the genes depend on the used cytotoxic drug. The response rates on the gene expression level, i.e. the number of genes regulated by the drugs actinomycin D, doxorubicin and vincristine, correlate to the clinical effectiveness of the drugs. Doxorubicin seems to exert its cytotoxic mechanism by regulating genes, which are involved in several different apoptosis regulating pathways. The exact knowledge of the genes affected by the drugs will help to understand the diverse modes of soft tissue sarcoma cell death in response to cytotoxic therapies. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|