Global gyrokinetic analysis of Wendelstein 7-X discharge: unveiling the importance of trapped-electron-mode and electron-temperature-gradient turbulence
Autor: | Felix Wilms, Alejandro Bañón Navarro, Thomas Windisch, Sergey Bozhenkov, Felix Warmer, Golo Fuchert, Oliver Ford, Daihong Zhang, Torsten Stange, Frank Jenko, the W7-X Team |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Nuclear Fusion, Vol 64, Iss 9, p 096040 (2024) |
Druh dokumentu: | article |
ISSN: | 1741-4326 0029-5515 |
DOI: | 10.1088/1741-4326/ad6675 |
Popis: | We present the first nonlinear, gyrokinetic, radially global simulation of a discharge of the Wendelstein 7-X-like stellarator, including kinetic electrons, an equilibrium radial electric field, as well as electromagnetic and collisional effects. By comparison against flux-tube and full-flux-surface simulations, we assess the impact of the equilibrium ExB-flow and flow shear on the stabilisation of turbulence. In contrast to the existing literature, we further provide substantial evidence for the turbulent electron heat flux being driven by trapped-electron-mode and electron-temperature-gradient turbulence in the core of the plasma. The former manifests as a hybrid together with ion-temperature-gradient turbulence and is primarily driven by the finite electron temperature gradient, which has largely been neglected in nonlinear stellarator simulations presented in the existing literature. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |