Popis: |
Revealing the spatial dynamics of vegetation change in Chongqing and their driving mechanisms is of major value to regional ecological management and conservation. Using several data sets, including the SPOT Normalized Difference Vegetation Index (NDVI), meteorological, soil, digital elevation model (DEM), human population density and others, combined with trend analysis, stability analysis, and geographic detectors, we studied the pattern of temporal and spatial variation in the NDVI and its stability across Chongqing from 2000 to 2019, and quantitatively analyzed the relative contribution of 18 drivers (natural or human variables) that could influence vegetation dynamics. Over the 20-year period, we found that Chongqing region’s NDVI had an annual average value of 0.78, and is greater than 0.7 for 93.52% of its total area. Overall, the NDVI increased at a rate of 0.05/10 year, with 81.67% of the areas undergoing significant expansion, primarily in the metropolitan areas of Chongqing’s Three Gorges Reservoir Area (TGR) and Wuling Mountain Area (WMA). The main factors influencing vegetation change were human activities, climate, and topography, for which the most influential variables respectively were night light brightness (NLB, 51.9%), annual average air temperature (TEM, 47%), and elevation (ELE, 44.4%). Furthermore, we found that interactions between differing types of factors were stronger than those arising between similar ones; of all pairwise interaction types tested, 92.9% of them were characterized by two-factor enhancement. The three most powerful interactions detected were those for NLB ∩ TEM (62.7%), NLB ∩ annual average atmospheric pressure (PRS, 62.7%), and NLB ∩ ELE (61.9%). Further, we identified the most appropriate kind or range of key elements shaping vegetation development and dynamics. Altogether, our findings can serve as a timely scientific foundation for developing a vegetative resource management strategy for the Yangtze River basin that duly takes into account local climate, terrain, and human activity. |