Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator

Autor: Hari M. Srivastava, Ahmad Motamednezhad, Ebrahim Analouei Adegani
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Mathematics, Vol 8, Iss 2, p 172 (2020)
Druh dokumentu: article
ISSN: 2227-7390
DOI: 10.3390/math8020172
Popis: In this article, we introduce a general family of analytic and bi-univalent functions in the open unit disk, which is defined by applying the principle of differential subordination between analytic functions and the Tremblay fractional derivative operator. The upper bounds for the general coefficients | a n | of functions in this subclass are found by using the Faber polynomial expansion. We have thereby generalized and improved some of the previously published results.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje