Pricing cumulative loss derivatives under additive models via Malliavin calculus

Autor: Mohammed El-arbi Khalfallah, Mohammed Lakhdar Hadji, Josep Vives
Jazyk: English<br />Portuguese
Rok vydání: 2022
Předmět:
Zdroj: Boletim da Sociedade Paranaense de Matemática, Vol 41 (2022)
Druh dokumentu: article
ISSN: 0037-8712
2175-1188
DOI: 10.5269/bspm.51549
Popis: We show that integration by parts formulas based on Malliavin-Skorohod calculus techniques for additive processes help us to compute quantities like ${\E}(L_T h(L_T))$ for different suitable functions $h$ and different models for the cumulative loss process $L_T$. These quantities are important in Insurance and Finance. For example they appear in computing expected shortfall risk measures or stop-loss contracts. The formulas given in the present paper, obtained by simple proofs, generalize the formulas given in a recent paper by Hillairet, Jiao and Réveillac using Malliavin calculus techniques for the standard Poisson process, a particular case of additive process.
Databáze: Directory of Open Access Journals