Human Lower Limb Motion Capture and Recognition Based on Smartphones
Autor: | Lin-Tao Duan, Michael Lawo, Zhi-Guo Wang, Hai-Ying Wang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Sensors, Vol 22, Iss 14, p 5273 (2022) |
Druh dokumentu: | article |
ISSN: | 22145273 1424-8220 |
DOI: | 10.3390/s22145273 |
Popis: | Human motion recognition based on wearable devices plays a vital role in pervasive computing. Smartphones have built-in motion sensors that measure the motion of the device with high precision. In this paper, we propose a human lower limb motion capture and recognition approach based on a Smartphone. We design a motion logger to record five categories of limb activities (standing up, sitting down, walking, going upstairs, and going downstairs) using two motion sensors (tri-axial accelerometer, tri-axial gyroscope). We extract the motion features and select a subset of features as a feature vector from the frequency domain of the sensing data using Fast Fourier Transform (FFT). We classify and predict human lower limb motion using three supervised learning algorithms: Naïve Bayes (NB), K-Nearest Neighbor (KNN), and Artificial Neural Networks (ANNs). We use 670 lower limb motion samples to train and verify these classifiers using the 10-folder cross-validation technique. Finally, we design and implement a live detection system to validate our motion detection approach. The experimental results show that our low-cost approach can recognize human lower limb activities with acceptable accuracy. On average, the recognition rate of NB, KNN, and ANNs are 97.01%, 96.12%, and 98.21%, respectively. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |